Studies on the Thermal Decomposition Mechanism at Diamond-Silica Interfaces Induced by Localized Laser Vitrification: experimental and ab-initio approach

Uproszczony widok
dc.abstract.enThis study investigates the thermal decomposition mechanisms at silica-diamond interfaces following localized laser vitrification, combining experimental analysis with molecular dynamics simulations. Two types of diamond particles were examined: NV-rich nanodiamonds (180 nm) and monocrystalline synthetic diamonds (154 nm). The samples were fabricated through a challenging process involving vacuum-based CO2 laser vitrification at 5.3 µm wavelength, addressing the inherent processing temperature incompatibility between diamond and silica. Comprehensive characterization using scanning electron microscopy revealed distinct interface regions with defect concentrations up to 10 μm in diameter for monocrystalline particles. Raman spectroscopy and fluorescence analysis demonstrated different decomposition behaviors between used particles, with samples exhibiting characteristic NV center emission at 637 nm. Thermogravimetric analysis coupled with mass spectrometry revealed a multi-step decomposition process, with CO2 release above 300°C and distinct thermal degradation temperatures for each diamond type. Molecular dynamics simulations using the Reax Force Field method elucidated the interface dynamics, revealing that amorphous silica catalyzes CO2 release from carboxylated diamond surfaces. This process generates localized pressure causing surface deformation and eventual glass layer delamination, with the critical temperature depending on diamond crystal face orientation. These findings provide crucial insights into thermal decomposition at silica-diamond interfaces, contributing to the development of hybrid materials for quantum physics applications, particularly in low-loss magnetically sensitive optical fibers for optomagnetometry.
dc.affiliationGdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Narutowicza 11/12, 80-233, Gdańsk, Poland
dc.affiliationFaculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Gdansk University of Technology, Narutowicza 11/12, Gdansk 80-233, Poland
dc.affiliationFaculty of Mechanics and Technology Rzeszów University of Technology, Kwiatkowskiego 4 37-450 Stalowa Wola
dc.affiliationFaculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
dc.affiliationPolish Academy of Sciences, The Szewalski Institute of Fluid-Flow Machinery, The Centre for Plasma and Laser Engineering, Fiszera 14, 80-231 Gdańsk, Poland
dc.affiliationUniversity of Bern, Institute of Applied Physics, Sidlerstrasse 5, 3012, Bern, Switzerland65 University of Warsaw, Faculty of Physics, Pasteura 5, 02-093, Warsaw, Poland
dc.affiliationŁukasiewicz Research Network, Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668, Warsaw, Poland
dc.affiliation.departmentWydział Fizyki
dc.affiliation.instituteInstytut Fizyki Doświadczalnej
dc.affiliation.instituteInstytut Geofizyki
dc.contributor.authorRobert Bogdanowicz
dc.contributor.authorKrzysztof Pyrchla
dc.contributor.authorMateusz Ficek
dc.contributor.authorMaciej J. Głowacki
dc.contributor.authorFranciszek Skiba
dc.contributor.authorJacek Ryl
dc.contributor.authorJustyna Gumieniak
dc.contributor.authorTatarczak, Piotr
dc.contributor.authorMirosław Sawczak
dc.contributor.authorMarta Prześniak-Welenc
dc.contributor.authorPascal Hänzi
dc.contributor.authorAlexander Heidt
dc.contributor.authorWysmołek, Andrzej
dc.contributor.authorBuczyński, Ryszard
dc.contributor.authorKlimczak, Mariusz
dc.date.accessioned2025-05-07T07:11:13Z
dc.date.available2025-05-07T07:11:13Z
dc.date.copyright2025-05
dc.date.issued2025-04-27
dc.description.financepublication_research
dc.description.versionoriginal_author
dc.identifier.doi10.58132/HUQ9UU
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/166382
dc.languageen
dc.language.otheren
dc.rightsCC-BY
dc.share.typeOPEN_REPOSITORY
dc.subject.ennanodiamond particles
dc.subject.ensilica
dc.subject.enlaser-induced vitrification
dc.subject.enmolecular dynamics
dc.subject.enthermal decomposition
dc.subject.plnanodiamenty
dc.subject.plkrzemionka
dc.subject.pllaserowo-wspomagana witryfikacja
dc.subject.pldynamika molekularna
dc.subject.plrozkład termiczny
dc.titleStudies on the Thermal Decomposition Mechanism at Diamond-Silica Interfaces Induced by Localized Laser Vitrification: experimental and ab-initio approach
dc.title.alternativeUnderstanding the Thermal Decomposition Mechanism at Diamond-Silica Interfaces Induced by Localized Laser Vitrification: experimental and ab-initio approach
dc.typeWorkingPaper
dspace.entity.typePublication