Artykuł w czasopiśmie
Brak miniatury
Licencja
Scalable Machine Learning with Granulated Data Summaries: A Case of Feature Selection
dc.abstract.en | We investigate how to use the histogram-based data summaries that are created and stored by one of the approximate database engines available in the market, for the purposes of redesigning and accelerating machine learning algorithms. As an example, we consider one of popular minimum redundancy maximum relevance (mRMR) feature selection methods based on mutual information. We use granulated data summaries to approximately calculate the entropy-based mutual information scores and observe the mRMR results compared to the case of working with the actual scores derived from the original data. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Polska |
dc.conference.datefinish | 2017-06-29 |
dc.conference.datestart | 2017-06-26 |
dc.conference.place | zAKOPANE |
dc.conference.series | International Symposium on Foundations of Intelligent Systems |
dc.conference.series | International Symposium on Foundations of Intelligent Systems |
dc.conference.seriesshortcut | ISMIS |
dc.conference.shortcut | ISMIS 2017 |
dc.conference.weblink | http://ismis2017.ii.pw.edu.pl/index.php |
dc.contributor.author | Ślęzak, Dominik |
dc.contributor.author | Betliński, Paweł |
dc.contributor.author | Chądzyńska-Krasowska, Agnieszka |
dc.date.accessioned | 2024-01-25T19:43:30Z |
dc.date.available | 2024-01-25T19:43:30Z |
dc.date.issued | 2017 |
dc.description.finance | Nie dotyczy |
dc.identifier.doi | 10.1007/978-3-319-60438-1_51 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/119039 |
dc.identifier.weblink | https://link.springer.com/chapter/10.1007%2F978-3-319-60438-1_51 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 519-529 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Data granulation |
dc.subject.en | Approximate query |
dc.subject.en | Feature selection |
dc.title | Scalable Machine Learning with Granulated Data Summaries: A Case of Feature Selection |
dc.type | JournalArticle |
dspace.entity.type | Publication |