Artykuł w czasopiśmie
Brak miniatury
Licencja
Orbit-finite linear programming
dc.abstract.en | An infinite set is orbit-finite if, up to permutations of the underlying structure of atoms, it has only finitely many elements. We study a generalisation of linear programming where constraints are expressed by an orbit-finite system of linear inequalities. As our principal contribution we provide a decision procedure for checking if such a system has a real solution, and for computing the minimal/maximal value of a linear objective function over the solution set. We also show undecidability of these problems in case when only integer solutions are considered. Therefore orbit-finite linear programming is decidable, while orbit-finite integer linear programming is not. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Stany Zjednoczone |
dc.conference.datefinish | 2023-06-29 |
dc.conference.datestart | 2023-06-26 |
dc.conference.place | Boston |
dc.conference.series | IEEE Symposium on Logic in Computer Science |
dc.conference.series | IEEE Symposium on Logic in Computer Science |
dc.conference.seriesshortcut | LICS |
dc.conference.shortcut | LICS 2023 |
dc.conference.weblink | https://lics.siglog.org/lics23/ |
dc.contributor.author | Lasota, Sławomir |
dc.contributor.author | Hofman, Piotr |
dc.contributor.author | Ghosh, Arka |
dc.date.accessioned | 2024-01-25T16:09:05Z |
dc.date.available | 2024-01-25T16:09:05Z |
dc.date.issued | 2023 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1109/LICS56636.2023.10175799 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/115029 |
dc.identifier.weblink | http://xplorestaging.ieee.org/ielx7/10175635/10175671/10175799.pdf?arnumber=10175799 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 1-14 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Orbit-finite linear programming |
dc.type | JournalArticle |
dspace.entity.type | Publication |