Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Models of Positive Truth

cris.lastimport.scopus2024-02-12T20:16:29Z
dc.abstract.enThis paper is a follow-up to [4], in which a mistake in [6] (which spread also to [9]) was corrected. We give a strenghtening of the main result on the semantical nonconservativity of the theory of PT− with internal induction for total formulae , denoted by PT− in [9]). We show that if to PT− the axiom of internal induction for all arithmetical formulae is added (giving ), then this theory is semantically stronger than . In particular the latter is not relatively truth definable (in the sense of [11]) in the former. Last but not least, we provide an axiomatic theory of truth which meets the requirements put forward by Fischer and Horsten in [9]. The truth theory we define is based on Weak Kleene Logic instead of the Strong one.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorWcisło, Bartosz
dc.contributor.authorŁełyk, Mateusz
dc.date.accessioned2024-01-25T12:50:02Z
dc.date.available2024-01-25T12:50:02Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.description.number1
dc.description.volume12
dc.identifier.doi10.1017/S1755020318000400
dc.identifier.issn1755-0203
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/112781
dc.identifier.weblinkhttps://www.cambridge.org/core/journals/review-of-symbolic-logic/article/abs/models-of-positive-truth/265FCCAFEC56D8187A67AF00E5CF50D8
dc.languageeng
dc.pbn.affiliationphilosophy
dc.relation.ispartofReview of Symbolic Logic
dc.relation.pages144-172
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enaxiomatic theories of truth
dc.subject.enconservativity
dc.subject.ennonstandard models of arithmetic
dc.subject.enfinite axiomatizability
dc.subject.enspeed-up
dc.titleModels of Positive Truth
dc.typeJournalArticle
dspace.entity.typePublication