Artykuł w czasopiśmie
Brak miniatury
Licencja

 

Compact matrix pseudogroups

dc.abstract.enThe compact matrix pseudogroup is a non-commutative compact space endowed with a group structure. The precise definition is given and a number of examples is presented. Among them we have compact group of matrices, duals of discrete groups and twisted (deformed)SU(N) groups. The representation theory is developed. It turns out that the tensor product of representations depends essentially on their order. The existence and the uniqueness of the Haar measure is proved and the orthonormality relations for matrix elements of irreducible representations are derived. The form of these relations differs from that in the group case. This is due to the fact that the Haar measure on pseudogroups is not central in general. The corresponding modular properties are discussed. The Haar measures on the twistedSU(2) group and on the finite matrix pseudogroup are found.
dc.affiliationUniwersytet Warszawski
dc.affiliation.departmentWydział Fizyki
dc.contributor.authorWoronowicz, Stanisław
dc.date.accessioned2024-11-05T11:49:51Z
dc.date.available2024-11-05T11:49:51Z
dc.date.issued1987-12
dc.description.number111
dc.description.versionfinal_published
dc.identifier.bibliographicCitationWoronowicz, S.L. Compact matrix pseudogroups. Commun.Math. Phys. 111, 613–665 (1987). https://doi.org/10.1007/BF01219077
dc.identifier.doihttps://doi.org/10.1007/BF01219077
dc.identifier.eissn1432-0916
dc.identifier.issn0010-3616
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/160594
dc.languageen
dc.pbn.affiliationphysical sciences
dc.relation.ispartofCommunications in Mathematical Physics
dc.relation.pages613–665
dc.rightsOther
dc.sciencecloudnosend
dc.share.typePUBLISHER_WEBSITE
dc.subject.enNeural Network
dc.subject.enMatrix Element
dc.subject.enNonlinear Dynamics
dc.subject.enTensor Product
dc.subject.enIrreducible Representation
dc.titleCompact matrix pseudogroups
dc.typeJournalArticle
dspace.entity.typePublication