Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BY-NCCC-BY-NC - Uznanie autorstwa - Użycie niekomercyjne
 

Finite Idempotent Set-Theoretic Solutions of the Yang–Baxter Equation

Uproszczony widok
dc.abstract.enIt is proven that finite idempotent left non-degenerate set-theoretic solutions (X,r) of the Yang–Baxter equation on a set X are determined by a left simple semigroup structure on X (in particular, a finite union of isomorphic copies of a group) and some maps q and φx on X⁠, for x∈X⁠. This structure turns out to be a group precisely when the associated Yang–Baxter monoid M(X,r) is cancellative and all the maps φx are equal to an automorphism of this group. Equivalently, the Yang–Baxter algebra K[M(X,r)] is right Noetherian, or in characteristic zero it has to be semiprime. The Yang–Baxter algebra is always a left Noetherian representable algebra of Gelfand–Kirillov dimension one. To prove these results, it is shown that the Yang–Baxter semigroup S(X,r) has a decomposition in finitely many cancellative semigroups Su indexed by the diagonal, each Su has a group of quotients Gu that is finite-by-(infinite cyclic) and the union of these groups carries the structure of a left simple semigroup. The case that X equals the diagonal is fully described by a single permutation on X⁠.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorKubat, Łukasz
dc.contributor.authorVerwimp, Charlotte
dc.contributor.authorAntwerpen, Arne Van
dc.contributor.authorJespers, Eric
dc.contributor.authorColazzo, Ilaria
dc.date.accessioned2024-01-25T00:41:09Z
dc.date.available2024-01-25T00:41:09Z
dc.date.copyright2023-08-15
dc.date.issued2023
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.1093/IMRN/RNAD183
dc.identifier.issn1073-7928
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/107176
dc.identifier.weblinkhttps://academic.oup.com/imrn/advance-article-pdf/doi/10.1093/imrn/rnad183/51112327/rnad183.pdf
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofInternational Mathematics Research Notices
dc.relation.pages1-32
dc.rightsCC-BY-NC
dc.sciencecloudnosend
dc.titleFinite Idempotent Set-Theoretic Solutions of the Yang–Baxter Equation
dc.typeJournalArticle
dspace.entity.typePublication