Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

A Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics

Uproszczony widok
dc.abstract.enIn the Bin Packing problem one is given n items with weights w1, …, wn and m bins with capacities c1, …, cm. The goal is to find a partition of the items into sets S1, …, Sm such that w(Sj) ≤ cj for every bin j, where w(X) denotes Σi∊xwi. Björklund, Husfeldt and Koivisto (SICOMP 2009) presented an time algorithm for Bin Packing. In this paper, we show that for every m ∊ ℕ there exists a constant σm > 0 such that an instance of Bin Packing with m bins can be solved in randomized time. Before our work, such improved algorithms were not known even for m equals 4. A key step in our approach is the following new result in Littlewood-Offord theory on the additive combinatorics of subset sums: For every δ > 0 there exists an ∊ > 0 such that if |{X ⊆ {1, …, n} : w(X) = v}| ≥ 2(1–∊)n for some v then |{w(X) : X ⊆ {1, …, n}}| ≤ 2δn.
dc.affiliationUniwersytet Warszawski
dc.conference.countryStany Zjednoczone
dc.conference.datefinish2021-01-13
dc.conference.datestart2021-01-10
dc.conference.placeAlexandria, Virginia (Virtual Conference)
dc.conference.seriesACM/SIAM Symposium on Discrete Algorithms
dc.conference.seriesACM/SIAM Symposium on Discrete Algorithms
dc.conference.seriesshortcutSODA
dc.conference.shortcutSODA 2021
dc.conference.weblinkhttps://www.siam.org/conferences/cm/conference/soda21
dc.contributor.authorPawlewicz, Jakub
dc.contributor.authorWęgrzycki, Karol
dc.contributor.authorSwennenhuis, Celine
dc.contributor.authorNederlof, Jesper
dc.date.accessioned2024-01-24T17:35:19Z
dc.date.available2024-01-24T17:35:19Z
dc.date.copyright2021-01-01
dc.date.issued2021
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.1137/1.9781611976465.102
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/101537
dc.identifier.weblinkhttps://doi.org/10.1137/1.9781611976465.102
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages1682-1701
dc.rightsCC-BY
dc.sciencecloudnosend
dc.titleA Faster Exponential Time Algorithm for Bin Packing With a Constant Number of Bins via Additive Combinatorics
dc.typeJournalArticle
dspace.entity.typePublication