Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Geometric features of Vessiot--Guldberg Lie algebras of conformal and Killing vector fields on R^2

dc.abstract.enThis paper locally classifies finite-dimensional Lie algebras of conformal and Killing vector fields on R^2 relative to an arbitrary pseudo-Riemannian metric. Several results about their geometric properties are detailed, e.g. their invariant distributions and induced symplectic structures. Findings are illustrated with two examples of physical nature: the Milne–Pinney equation and the projective Schrödinger equation on the Riemann sphere.
dc.affiliationUniwersytet Warszawski
dc.conference.countryPolska
dc.conference.datefinish2016-10-01
dc.conference.datestart2016-10-01
dc.conference.placeBędlewo
dc.conference.series50th Seminar "Sophus Lie"
dc.conference.series50th Seminar "Sophus Lie"
dc.contributor.authorAraujo, Javier De Lucas
dc.contributor.authorLewandowski, Michał
dc.date.accessioned2024-01-25T02:06:01Z
dc.date.available2024-01-25T02:06:01Z
dc.date.issued2017
dc.description.financeNie dotyczy
dc.description.volume113
dc.identifier.doi10.4064/BC113-0-13
dc.identifier.issn0137-6934
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/107879
dc.identifier.weblinkhttps://www.impan.pl/pl/wydawnictwa/banach-center-publications/all/113//111457/geometric-features-of-vessiot-guldberg-lie-algebras-of-conformal-and-killing-vector-fields-on-mathbb-r-2
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofBANACH CENTER PUBLICATIONS
dc.relation.pages243-262
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleGeometric features of Vessiot--Guldberg Lie algebras of conformal and Killing vector fields on R^2
dc.typeJournalArticle
dspace.entity.typePublication