Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Khovanov homotopy type, periodic links and localizations

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:21:01Z
dc.abstract.enGiven an m-periodic link L⊂S3, we show that the Khovanov spectrum XL constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of XL to the equivariant Khovanov homology of L constructed by the second author. The action of Steenrod algebra on the cohomology of XL gives an extra structure of the periodic link. Another consequence of our construction is an alternative proof of the localization formula for Khovanov homology, obtained first by Stoffregen and Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology of the quotient link in terms of equivariant Khovanov homology of the original link.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorBorodzik, Maciej
dc.contributor.authorPolitarczyk, Wojciech
dc.contributor.authorCasanova, Marithania Silvero
dc.date.accessioned2024-01-25T04:47:08Z
dc.date.available2024-01-25T04:47:08Z
dc.date.copyright2021-02-19
dc.date.issued2021
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.versionFINAL_PUBLISHED
dc.description.volume380
dc.identifier.doi10.1007/S00208-021-02157-Y
dc.identifier.issn0025-5831
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/110322
dc.identifier.weblinkhttp://link.springer.com/content/pdf/10.1007/s00208-021-02157-y.pdf
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofMathematische Annalen
dc.relation.pages1233–1309
dc.rightsCC-BY
dc.sciencecloudnosend
dc.titleKhovanov homotopy type, periodic links and localizations
dc.typeJournalArticle
dspace.entity.typePublication