Artykuł w czasopiśmie
Brak miniatury
Licencja
Khovanov homotopy type, periodic links and localizations
cris.lastimport.scopus | 2024-02-12T20:21:01Z |
dc.abstract.en | Given an m-periodic link L⊂S3, we show that the Khovanov spectrum XL constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of XL to the equivariant Khovanov homology of L constructed by the second author. The action of Steenrod algebra on the cohomology of XL gives an extra structure of the periodic link. Another consequence of our construction is an alternative proof of the localization formula for Khovanov homology, obtained first by Stoffregen and Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology of the quotient link in terms of equivariant Khovanov homology of the original link. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Borodzik, Maciej |
dc.contributor.author | Politarczyk, Wojciech |
dc.contributor.author | Casanova, Marithania Silvero |
dc.date.accessioned | 2024-01-25T04:47:08Z |
dc.date.available | 2024-01-25T04:47:08Z |
dc.date.copyright | 2021-02-19 |
dc.date.issued | 2021 |
dc.description.accesstime | AT_PUBLICATION |
dc.description.finance | Publikacja bezkosztowa |
dc.description.version | FINAL_PUBLISHED |
dc.description.volume | 380 |
dc.identifier.doi | 10.1007/S00208-021-02157-Y |
dc.identifier.issn | 0025-5831 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/110322 |
dc.identifier.weblink | http://link.springer.com/content/pdf/10.1007/s00208-021-02157-y.pdf |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Mathematische Annalen |
dc.relation.pages | 1233–1309 |
dc.rights | CC-BY |
dc.sciencecloud | nosend |
dc.title | Khovanov homotopy type, periodic links and localizations |
dc.type | JournalArticle |
dspace.entity.type | Publication |