Artykuł w czasopiśmie
Brak miniatury
Licencja
Minimal Ws,ns$W^{s,\frac{n}{s}}$‐harmonic maps in homotopy classes
dc.abstract.en | Let a closed -dimensional manifold, be a closed manifold, and let for . We extend the monumental work of Sacks and Uhlenbeck by proving that if , then there exists a minimizing -harmonic map homotopic to . If , then we prove that there exists a -harmonic map from to in a generating set of . Since several techniques, especially Pohozaev-type arguments, are unknown in the fractional framework (in particular, when , one cannot argue via an extension method), we develop crucial new tools that are interesting on their own: such as a removability result for point singularities and a balanced energy estimate for nonscaling invariant energies. Moreover, we prove the regularity theory for minimizing -maps into manifolds. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Schikorra, Armin |
dc.contributor.author | Mazowiecka, Katarzyna |
dc.date.accessioned | 2024-01-25T12:40:18Z |
dc.date.available | 2024-01-25T12:40:18Z |
dc.date.issued | 2023 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 2 |
dc.description.volume | 108 |
dc.identifier.doi | 10.1112/JLMS.12769 |
dc.identifier.issn | 0024-6107 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/112633 |
dc.identifier.weblink | https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms.12769 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Journal of the London Mathematical Society |
dc.relation.pages | 742-836 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Minimal Ws,ns$W^{s,\frac{n}{s}}$‐harmonic maps in homotopy classes |
dc.type | JournalArticle |
dspace.entity.type | Publication |