Artykuł w czasopiśmie
Brak miniatury
Licencja
Large Scale Windowed Matching
cris.lastimport.scopus | 2024-02-12T20:20:32Z |
dc.abstract.en | Missing or invalid records in sales data are a common obstacle that can damage the overall effectiveness of market analysis. Completing the data on the basis of the records obtained so far can be formulated in means of a schema matching task. In this paper we present a machine learning based method for performing schema matching for transactional data. The analysis is based on a dataset of over 700.000 transactions from retail stores. We confront the proposed solution with manual and conventional approaches. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Japonia |
dc.conference.datefinish | 2022-12-20 |
dc.conference.datestart | 2022-12-17 |
dc.conference.place | Osaka |
dc.conference.series | IEEE International Conference on Big Data |
dc.conference.series | IEEE International Conference on Big Data |
dc.conference.seriesshortcut | BigData |
dc.conference.shortcut | IEEE BigData 2022 |
dc.conference.weblink | http://bigdataieee.org/BigData2022/index.html |
dc.contributor.author | Ciebiera, Krzysztof |
dc.contributor.author | Przyborowski, Mateusz |
dc.contributor.author | Stencel, Krzysztof |
dc.date.accessioned | 2024-01-25T04:59:38Z |
dc.date.available | 2024-01-25T04:59:38Z |
dc.date.issued | 2022 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1109/BIGDATA55660.2022.10020606 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/110882 |
dc.identifier.weblink | http://xplorestaging.ieee.org/ielx7/10020192/10020156/10020606.pdf?arnumber=10020606 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 6253-6255 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Large Scale Windowed Matching |
dc.type | JournalArticle |
dspace.entity.type | Publication |