Artykuł w czasopiśmie
Brak miniatury
Licencja
Variational approach to the asymptotic mean-value property for the p-Laplacian on Carnot groups
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Adamowicz, Tomasz |
dc.contributor.author | Kijowski, Antoni |
dc.contributor.author | Pinamonti, Andrea |
dc.contributor.author | Warhurst, Benjamin |
dc.date.accessioned | 2024-01-26T11:45:41Z |
dc.date.available | 2024-01-26T11:45:41Z |
dc.date.issued | 2020 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.volume | 198 |
dc.identifier.doi | 10.1016/J.NA.2020.111893 |
dc.identifier.issn | 0362-546X |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/124549 |
dc.identifier.weblink | https://api.elsevier.com/content/article/PII:S0362546X20301528?httpAccept=text/xml |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Nonlinear Analysis, Theory, Methods and Applications |
dc.relation.pages | 111893 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Asymptotic mean value property |
dc.subject.en | Carnot group |
dc.subject.en | Heisenberg group |
dc.subject.en | Lie algebra |
dc.subject.en | Lie group |
dc.subject.en | Mean value formula |
dc.subject.en | p-Laplace |
dc.subject.en | Viscosity solution |
dc.title | Variational approach to the asymptotic mean-value property for the p-Laplacian on Carnot groups |
dc.type | JournalArticle |
dspace.entity.type | Publication |