Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Subexponential-time algorithms for finding large induced sparse subgraphs

dc.abstract.enLetCandDbe hereditary graph classes. Consider the following problem: given a graphG∈ D,find a largest, in terms of the number of vertices, induced subgraph ofGthat belongs toC. Weprove that it can be solved in2o(n)time, wherenis the number of vertices ofG, if the followingconditions are satisfied:the graphs inCare sparse, i.e., they have linearly many edges in terms of the number of vertices;the graphs inDadmit balanced separators of size governed by their density, e.g.,O(∆)orO(√m), where∆andmdenote the maximum degree and the number of edges, respectively; andthe considered problem admits a single-exponential fixed-parameter algorithm when parameter-ized by the treewidth of the input graph.This leads, for example, to the following corollaries for specific classesCandD:a largest induced forest in aPt-free graph can be found in2 ̃O(n2/3)time, for every fixedt; anda largest induced planar graph in a string graph can be found in2 ̃O(n3/4) time.
dc.affiliationUniwersytet Warszawski
dc.conference.countryNiemcy
dc.conference.datefinish2019-09-13
dc.conference.datestart2019-09-11
dc.conference.placeMonachium
dc.conference.seriesInternational Symposium on Parameterized and Exact Computation (was IWPEC pre 2004)
dc.conference.seriesInternational Symposium on Parameterized and Exact Computation (was IWPEC pre 2004)
dc.conference.shortcutIPEC 2019
dc.conference.weblinkhttps://algo2019.ak.in.tum.de/index.php/menue-ipec/ipec-call
dc.contributor.authorPilipczuk, Michał
dc.contributor.authorWalczak, Bartosz
dc.contributor.authorRzążewski, Paweł
dc.contributor.authorOkrasa, Karolina
dc.contributor.authorNovotna, Jana
dc.contributor.authorLeeuwen, Erik Jan van
dc.date.accessioned2024-01-26T09:20:48Z
dc.date.available2024-01-26T09:20:48Z
dc.date.copyright2020-01-13
dc.date.issued2019
dc.description.accesstimeAT_PUBLICATION
dc.description.financeNie dotyczy
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.4230/LIPICS.IPEC.2019.23
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/121042
dc.identifier.weblinkhttps://ruj.uj.edu.pl/xmlui/handle/item/130538
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages23:1-23:11
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.enstring graphs
dc.subject.ensubexponential algorithm
dc.subject.enfeedback vertex set
dc.subject.enPt-free graphs
dc.titleSubexponential-time algorithms for finding large induced sparse subgraphs
dc.typeJournalArticle
dspace.entity.typePublication