Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

High rank torus actions on contact manifolds

Uproszczony widok
dc.abstract.enWe prove LeBrun–Salamon conjecture in the following situation: if X is a contact Fano manifold of dimension 2n+1 whose group of automorphisms is reductive of rank ≥max(2,(n−3)/2) then X is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorConde, Luis E. Solá
dc.contributor.authorOcchetta, Gianluca
dc.contributor.authorWiśniewski, Jarosław
dc.contributor.authorRomano, Eleonora
dc.date.accessioned2024-01-25T03:28:17Z
dc.date.available2024-01-25T03:28:17Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.description.number1
dc.description.volume27
dc.identifier.doi10.1007/S00029-021-00621-W
dc.identifier.issn1022-1824
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/108510
dc.identifier.weblinkhttps://doi.org/10.1007/s00029-021-00621-w
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofSelecta Mathematica, New Series
dc.relation.pages10:1-10:33
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.encomplex contact manifolds
dc.subject.enquaternion-kahler manifolds
dc.subject.engroup actions
dc.subject.enalgebraic torus
dc.titleHigh rank torus actions on contact manifolds
dc.typeJournalArticle
dspace.entity.typePublication