Artykuł w czasopiśmie
Brak miniatury
Licencja
High rank torus actions on contact manifolds
dc.abstract.en | We prove LeBrun–Salamon conjecture in the following situation: if X is a contact Fano manifold of dimension 2n+1 whose group of automorphisms is reductive of rank ≥max(2,(n−3)/2) then X is the adjoint variety of a simple group. The rank assumption is fulfilled not only by the three series of classical linear groups but also by almost all the exceptional ones. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Conde, Luis E. Solá |
dc.contributor.author | Occhetta, Gianluca |
dc.contributor.author | Wiśniewski, Jarosław |
dc.contributor.author | Romano, Eleonora |
dc.date.accessioned | 2024-01-25T03:28:17Z |
dc.date.available | 2024-01-25T03:28:17Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 1 |
dc.description.volume | 27 |
dc.identifier.doi | 10.1007/S00029-021-00621-W |
dc.identifier.issn | 1022-1824 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/108510 |
dc.identifier.weblink | https://doi.org/10.1007/s00029-021-00621-w |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Selecta Mathematica, New Series |
dc.relation.pages | 10:1-10:33 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | complex contact manifolds |
dc.subject.en | quaternion-kahler manifolds |
dc.subject.en | group actions |
dc.subject.en | algebraic torus |
dc.title | High rank torus actions on contact manifolds |
dc.type | JournalArticle |
dspace.entity.type | Publication |