Artykuł recenzyjny
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Applying Hybrid ARIMA-SGARCH in Algorithmic Investment Strategies on S&P500 Index

dc.abstract.enThis research aims to compare the performance of ARIMA as a linear model with that of the combination of ARIMA and GARCH family models to forecast S&P500 log returns in order to construct algorithmic investment strategies on this index. We used the data collected from Yahoo Finance with daily frequency for the period from 1 January 2000 to 31 December 2019. By using a rolling window approach, we compared ARIMA with the hybrid models to examine whether hybrid ARIMA-SGARCH and ARIMA-EGARCH can really reflect the specific time-series characteristics and have better predictive power than the simple ARIMA model. In order to assess the precision and quality of these models in forecasting, we compared their equity lines, their forecasting error metrics (MAE, MAPE, RMSE, MAPE), and their performance metrics (annualized return compounded, annualized standard deviation, maximum drawdown, information ratio, and adjusted information ratio). The main contribution of this research is to show that the hybrid models outperform ARIMA and the benchmark (Buy&Hold strategy on S&P500 index) over the long term. These results are not sensitive to varying window sizes, the type of distribution, and the type of the GARCH model.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorVo, Nguyen
dc.contributor.authorŚlepaczuk, Robert
dc.date.accessioned2024-01-24T16:55:04Z
dc.date.available2024-01-24T16:55:04Z
dc.date.copyright2022-01-20
dc.date.issued2022
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.number2
dc.description.versionFINAL_PUBLISHED
dc.description.volume24
dc.identifier.doi10.3390/E24020158
dc.identifier.issn1099-4300
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/101035
dc.identifier.weblinkhttps://www.mdpi.com/1099-4300/24/2/158
dc.languageeng
dc.pbn.affiliationeconomics and finance
dc.relation.ispartofEntropy
dc.relation.pages158
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.enalgorithmic investment strategies
dc.subject.enARIMA
dc.subject.enARIMA-SGARCH
dc.subject.enARIMA-EGARCH
dc.subject.enhybrid model
dc.subject.enstock returns forecast
dc.subject.enmodel robustness
dc.subject.ensensitivity analysis
dc.titleApplying Hybrid ARIMA-SGARCH in Algorithmic Investment Strategies on S&P500 Index
dc.typeReviewArticle
dspace.entity.typePublication