Artykuł w czasopiśmie
Brak miniatury
Licencja
Partitioning edges of a planar graph into linear forests and a matching
cris.lastimport.scopus | 2024-02-12T20:24:31Z |
dc.abstract.pl | We show that the edges of any planar graph of maximum degree at most 9 can be partitioned into 4 linear forests and a matching. Combined with known results, this implies that the edges of any planar graph G of odd maximum degree ∆ ≥ 9 can be partitioned into (∆−1)/2 linear forests and one matching. This strengthens well-known results stating that graphs in this class have chromatic index ∆ [Vizing, 1965] and linear arboricity at most ⌈(Δ+1)/2⌉. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Pilipczuk, Michał |
dc.contributor.author | Kowalik, Łukasz |
dc.contributor.author | Czyżewska, Jadwiga |
dc.contributor.author | Bonamy, Marthe |
dc.date.accessioned | 2024-01-25T16:21:42Z |
dc.date.available | 2024-01-25T16:21:42Z |
dc.date.issued | 2023 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 3 |
dc.description.volume | 104 |
dc.identifier.doi | 10.1002/JGT.22995 |
dc.identifier.issn | 0364-9024 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/115551 |
dc.identifier.weblink | https://onlinelibrary.wiley.com/doi/pdf/10.1002/jgt.22995 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.ispartof | Journal of Graph Theory |
dc.relation.pages | 659-677 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Combinatorics |
dc.subject.en | Discrete Mathematics |
dc.title | Partitioning edges of a planar graph into linear forests and a matching |
dc.type | JournalArticle |
dspace.entity.type | Publication |