Artykuł w czasopiśmie
Brak miniatury
Licencja
Quantitative characterization of traces of Sobolev maps
cris.lastimport.scopus | 2024-02-12T20:08:27Z |
dc.abstract.en | We give a quantitative characterization of traces on the boundary of Sobolev maps in Ẇ1,(ℳ,), where ℳ and are compact Riemannian manifolds, ℳ≠∅: the Borel-measurable maps :ℳ→ that are the trace of a map ∈Ẇ1,(ℳ,) are characterized as the maps for which there exists an extension energy density :ℳ→[0,∞] that controls the Sobolev energy of extensions from ⌊−1⌋-dimensional subsets of ℳ to ⌊⌋-dimensional subsets of ℳ. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Mazowiecka, Katarzyna |
dc.contributor.author | Schaftingen, Jean Van |
dc.date.accessioned | 2024-01-25T18:43:46Z |
dc.date.available | 2024-01-25T18:43:46Z |
dc.date.issued | 2022 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1142/S0219199722500031 |
dc.identifier.issn | 0219-1997 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/117682 |
dc.identifier.weblink | https://www.worldscientific.com/doi/epdf/10.1142/S0219199722500031 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Communications in Contemporary Mathematics |
dc.relation.pages | 2250003 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Quantitative characterization of traces of Sobolev maps |
dc.type | JournalArticle |
dspace.entity.type | Publication |