Artykuł w czasopiśmie
Brak miniatury
Licencja
Shortest paths in one-counter systems
dc.abstract.en | We show that any one-counter automaton with n states, if its language is non-empty, accepts some word of length at most O(n2). This closes the gap between the previously known upper bound of O(n3) and lower bound of Ω(n2). More generally, we prove a tight upper bound on the length of shortest paths between arbitrary configurations in one-counter transition systems (weaker bounds have previously appeared in the literature). |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Pilipczuk, Michał |
dc.contributor.author | Chistikov, Dmitry |
dc.contributor.author | Czerwiński, Wojciech |
dc.contributor.author | Wehar, Michael |
dc.contributor.author | Hofman, Piotr |
dc.date.accessioned | 2024-01-26T07:36:00Z |
dc.date.available | 2024-01-26T07:36:00Z |
dc.date.issued | 2019 |
dc.description.finance | Nie dotyczy |
dc.description.number | 1 |
dc.description.volume | 15 |
dc.identifier.doi | 10.23638/LMCS-15(1:19)2019 |
dc.identifier.issn | 1860-5974 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/119760 |
dc.identifier.weblink | https://lmcs.episciences.org/5251 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.ispartof | Logical Methods in Computer Science |
dc.relation.pages | 19:1–19:28 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Shortest paths in one-counter systems |
dc.type | JournalArticle |
dspace.entity.type | Publication |