Artykuł w czasopiśmie
Brak miniatury
Licencja
A very special EPW sextic and two IHS fourfolds
dc.abstract.en | We show that the Hilbert scheme of two points on the Vinberg K3 surface has a two-to-one map onto a very symmetric EPW sextic Y in P5. The fourfold Y is singular along 60 planes, 20 of which form a complete family of incident planes. This solves a problem of Morin and O’Grady and establishes that 20 is the maximal cardinality of such a family of planes. Next, we show that this Hilbert scheme is birationally isomorphic to the Kummer-type IHS fourfold X0 constructed by Donten-Bury and Wiśniewski [On 81 symplectic resolutions of a 4–dimensional quotient by a group of order 32, preprint (2014)]. We find that X0 is also related to the Debarre–Varley abelian fourfold. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Donten-Bury, Maria |
dc.contributor.author | Kapustka, Grzegorz |
dc.contributor.author | Kapustka, Michał |
dc.contributor.author | Geemen, Bert van |
dc.contributor.author | Wiśniewski, Jarosław |
dc.date.accessioned | 2024-01-24T18:14:22Z |
dc.date.available | 2024-01-24T18:14:22Z |
dc.date.issued | 2017 |
dc.description.finance | Nie dotyczy |
dc.description.number | 2 |
dc.description.volume | 21 |
dc.identifier.doi | 10.2140/GT.2017.21.1179 |
dc.identifier.issn | 1465-3060 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/101930 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Geometry and Topology |
dc.relation.pages | 1179-1230 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | A very special EPW sextic and two IHS fourfolds |
dc.type | JournalArticle |
dspace.entity.type | Publication |