Rozdział w monografii
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Tractability of Multivariate Problems for Standard and Linear Information in the Worst Case Setting: Part II

Uproszczony widok
cris.lastimport.scopus2024-02-12T19:43:07Z
dc.abstract.enWe study QPT (quasi-polynomial tractability) in the worst case setting for linear tensor product problems defined over Hilbert spaces. We assume that the domain space is a reproducing kernel Hilbert space so that function values are well defined. We prove QPT for algorithms that use only function values under the three assumptions: 1. the minimal errors for the univariate case decay polynomially fast to zero, 2. the largest singular value for the univariate case is simple and 3. the eigenfunction corresponding to the largest singular value is a multiple of the function value at some point. The first two assumptions are necessary for QPT. The third assumption is necessary for QPT for some Hilbert spaces.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorWoźniakowski, Henryk
dc.contributor.authorNovak, Erich
dc.date.accessioned2024-01-28T12:04:25Z
dc.date.available2024-01-28T12:04:25Z
dc.date.issued2018
dc.description.financeNie dotyczy
dc.identifier.doi10.1007/978-3-319-72456-0_42
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/137657
dc.identifier.weblinkhttp://link.springer.com/content/pdf/10.1007/978-3-319-72456-0_42
dc.languageeng
dc.pbn.affiliationmathemathics
dc.publisher.ministerialSpringer International Publishing
dc.relation.bookContemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan
dc.relation.pages963-977
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleTractability of Multivariate Problems for Standard and Linear Information in the Worst Case Setting: Part II
dc.typeMonographChapter
dspace.entity.typePublication