Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa

Deduction in Non-Fregean Propositional Logic SCI

Autor
Welle, Magdalena
Golińska-Pilarek, Joanna
Data publikacji
2019
Abstrakt (EN)

We study deduction systems for the weakest, extensional and two-valued non-Fregean propositional logic SCI . The language of SCI is obtained by expanding the language of classical propositional logic with a new binary connective ≡ that expresses the identity of two statements; that is, it connects two statements and forms a new one, which is true whenever the semantic correlates of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic with axioms characterizing the identity connective, postulating that identity must be an equivalence and obey an extensionality principle. First, we present and discuss two types of systems for SCI known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss and compare the systems presented in the paper.

Słowa kluczowe EN
non-Fregean logic
identity connective
sentential calculus with identity
situational semantics
deduction
(dual) tableau
Gentzen system
Dyscyplina PBN
filozofia
Czasopismo
Axioms
Tom
8 (4)
Zeszyt
115
Data udostępnienia w otwartym dostępie
2019-10-17
Licencja otwartego dostępu
Uznanie autorstwa