Artykuł w czasopiśmie
Brak miniatury
Licencja
Duality in Intuitionistic Propositional Logic
dc.abstract.en | It is known that provability in propositional intuitionistic logic is Pspace-complete. As Pspace is closed under complements, there must exist a Logspace-reduction from refutability to provability. Here we describe a direct translation: given a formula φ, we define ̅φ so that ̅φ is provable if and only if φ is not. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Włochy |
dc.conference.datefinish | 2020-03-05 |
dc.conference.datestart | 2020-03-02 |
dc.conference.place | Turyn |
dc.conference.series | International Conference on Types for Proofs and Programs |
dc.conference.series | International Conference on Types for Proofs and Programs |
dc.conference.seriesweblink | https://sites.google.com/view/thetypesconferences |
dc.conference.shortcut | TYPES 2020 |
dc.conference.weblink | https://types2020.di.unito.it |
dc.contributor.author | Urzyczyn, Paweł |
dc.date.accessioned | 2024-01-24T22:14:15Z |
dc.date.available | 2024-01-24T22:14:15Z |
dc.date.copyright | 2021-06-07 |
dc.date.issued | 2021 |
dc.description.accesstime | AT_PUBLICATION |
dc.description.finance | Środki finansowe przyznane na realizację projektu w zakresie badań naukowych lub prac rozwojowych |
dc.description.version | FINAL_PUBLISHED |
dc.description.volume | 188 |
dc.identifier.doi | 10.4230/LIPICS.TYPES.2020.11 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/105384 |
dc.identifier.weblink | https://drops.dagstuhl.de/opus/volltexte/2021/13890/ |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 11:1--11:10 |
dc.rights | CC-BY |
dc.sciencecloud | nosend |
dc.title | Duality in Intuitionistic Propositional Logic |
dc.type | JournalArticle |
dspace.entity.type | Publication |