Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

Duality in Intuitionistic Propositional Logic

Uproszczony widok
dc.abstract.enIt is known that provability in propositional intuitionistic logic is Pspace-complete. As Pspace is closed under complements, there must exist a Logspace-reduction from refutability to provability. Here we describe a direct translation: given a formula φ, we define ̅φ so that ̅φ is provable if and only if φ is not.
dc.affiliationUniwersytet Warszawski
dc.conference.countryWłochy
dc.conference.datefinish2020-03-05
dc.conference.datestart2020-03-02
dc.conference.placeTuryn
dc.conference.seriesInternational Conference on Types for Proofs and Programs
dc.conference.seriesInternational Conference on Types for Proofs and Programs
dc.conference.seriesweblinkhttps://sites.google.com/view/thetypesconferences
dc.conference.shortcutTYPES 2020
dc.conference.weblinkhttps://types2020.di.unito.it
dc.contributor.authorUrzyczyn, Paweł
dc.date.accessioned2024-01-24T22:14:15Z
dc.date.available2024-01-24T22:14:15Z
dc.date.copyright2021-06-07
dc.date.issued2021
dc.description.accesstimeAT_PUBLICATION
dc.description.financeŚrodki finansowe przyznane na realizację projektu w zakresie badań naukowych lub prac rozwojowych
dc.description.versionFINAL_PUBLISHED
dc.description.volume188
dc.identifier.doi10.4230/LIPICS.TYPES.2020.11
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/105384
dc.identifier.weblinkhttps://drops.dagstuhl.de/opus/volltexte/2021/13890/
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages11:1--11:10
dc.rightsCC-BY
dc.sciencecloudnosend
dc.titleDuality in Intuitionistic Propositional Logic
dc.typeJournalArticle
dspace.entity.typePublication