Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

What factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:56:23Z
dc.abstract.enThis article investigates the spatially uneven migration from Warsaw to its suburban municipalities. We report a novel approach to modelling suburbanisation: several linear and nonlinear predictive models are applied, and Explainable Artificial Intelligence methods are used to interpret the shape of relationships between the dependent variable and the most important regressors. The support vector regression algorithm is found to yield the most accurate predictions of the number of migrants to the suburbs of Warsaw. In addition, we find that migrants choose wealthier and more urbanised municipalities that offer better institutional amenities and a shorter driving time to Warsaw’s city centre.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorWójcik, Piotr
dc.contributor.authorWinnicki, Szymon
dc.contributor.authorBogusz, Honorata
dc.date.accessioned2024-01-26T11:57:10Z
dc.date.available2024-01-26T11:57:10Z
dc.date.copyright2023-09-25
dc.date.issued2023
dc.description.accesstimeAT_PUBLICATION
dc.description.financePublikacja bezkosztowa
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.1007/S00168-023-01245-Y
dc.identifier.issn0570-1864
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/124922
dc.identifier.weblinkhttps://doi.org/10.1007/s00168-023-01245-y
dc.languageeng
dc.pbn.affiliationeconomics and finance
dc.relation.ispartofAnnals of Regional Science
dc.rightsCC-BY
dc.sciencecloudnosend
dc.titleWhat factors contribute to uneven suburbanisation? Predicting the number of migrants from Warsaw to its suburbs with machine learning
dc.typeJournalArticle
dspace.entity.typePublication