Artykuł w czasopiśmie
Brak miniatury
Licencja
On the Domains of Bessel Operators
dc.abstract.en | We consider the Schrödinger operator on the halfline with the potential (m2−14)1x2, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1 and of its unique closed realization for Re(m)>1 coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1 the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Georgescu, Vladimir |
dc.contributor.author | Dereziński, Jan |
dc.date.accessioned | 2024-01-25T15:46:14Z |
dc.date.available | 2024-01-25T15:46:14Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1007/S00023-021-01058-9 |
dc.identifier.issn | 1424-0637 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/114805 |
dc.identifier.weblink | https://link.springer.com/content/pdf/10.1007/s00023-021-01058-9.pdf |
dc.language | eng |
dc.pbn.affiliation | physical sciences |
dc.relation.ispartof | Annales Henri Poincare |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | On the Domains of Bessel Operators |
dc.type | JournalArticle |
dspace.entity.type | Publication |