Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

On the Domains of Bessel Operators

Uproszczony widok
dc.abstract.enWe consider the Schrödinger operator on the halfline with the potential (m2−14)1x2, often called the Bessel operator. We assume that m is complex. We study the domains of various closed homogeneous realizations of the Bessel operator. In particular, we prove that the domain of its minimal realization for |Re(m)|<1 and of its unique closed realization for Re(m)>1 coincide with the minimal second-order Sobolev space. On the other hand, if Re(m)=1 the minimal second-order Sobolev space is a subspace of infinite codimension of the domain of the unique closed Bessel operator. The properties of Bessel operators are compared with the properties of the corresponding bilinear forms.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorGeorgescu, Vladimir
dc.contributor.authorDereziński, Jan
dc.date.accessioned2024-01-25T15:46:14Z
dc.date.available2024-01-25T15:46:14Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.identifier.doi10.1007/S00023-021-01058-9
dc.identifier.issn1424-0637
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/114805
dc.identifier.weblinkhttps://link.springer.com/content/pdf/10.1007/s00023-021-01058-9.pdf
dc.languageeng
dc.pbn.affiliationphysical sciences
dc.relation.ispartofAnnales Henri Poincare
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleOn the Domains of Bessel Operators
dc.typeJournalArticle
dspace.entity.typePublication