Artykuł w czasopiśmie
Brak miniatury
Licencja
Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs
cris.lastimport.scopus | 2024-02-12T19:35:48Z |
dc.abstract.en | <p>For graphs G and H, a homomorphism from G to H is an edge-preserving mapping from the vertex set of G to the vertex set of H. For a fixed graph H, by Hom(H) we denote the computational problem which asks whether a given graph G admits a homomorphism to H. If H is a complete graph with k vertices, then Hom(H) is equivalent to the k-Coloring problem, so graph homomorphisms can be seen as generalizations of colorings. It is known that Hom(H) is polynomial-time solvable if H is bipartite or has a vertex with a loop, and NP-complete otherwise [Hell and Nešetřil, JCTB 1990]. In this paper we are interested in the complexity of the problem, parameterized by the treewidth of the input graph G. If G has n vertices and is given along with its tree decomposition of width tw(G), then the problem can be solved in time |V (H)|<sup>tw(</sup>G<sup>)</sup> · n<sup>O</sup><sup>(1)</sup>, using a straightforward dynamic programming. We explore whether this bound can be improved. We show that if H is a projective core, then the existence of such a faster algorithm is unlikely: assuming the Strong Exponential Time Hypothesis (SETH), the Hom(H) problem cannot be solved in time (|V (H)| − ε)<sup>tw(</sup>G<sup>)</sup> · n<sup>O</sup><sup>(1)</sup>, for any ε > 0. This result provides a full complexity characterization for a large class of graphs H, as almost all graphs are projective cores. We also notice that the naive algorithm can be improved for some graphs H, and show a complexity classification for all graphs H, assuming two conjectures from algebraic graph theory. In particular, there are no known graphs H which are not covered by our result. In order to prove our results, we bring together some tools and techniques from algebra and from fine-grained complexity.</p> |
dc.abstract.pl | W pracy analizujemy złożoność problemu znajdowania homomorfizmu w ustalony graf H, parametryzowaną przez szerokość drzewową grafu G. Pokazujemy nieoczekiwany związek tego problemu z pewnymi zagadnieniami z algebraicznej teorii grafów. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Stany Zjednoczone |
dc.conference.datefinish | 2020-01-08 |
dc.conference.datestart | 2020-01-05 |
dc.conference.place | Salt Lake City |
dc.conference.series | ACM/SIAM Symposium on Discrete Algorithms |
dc.conference.series | ACM/SIAM Symposium on Discrete Algorithms |
dc.conference.seriesshortcut | SODA |
dc.conference.shortcut | SODA 2020 |
dc.conference.weblink | https://www.siam.org/conferences/cm/conference/soda20 |
dc.contributor.author | Rzążewski, Paweł |
dc.contributor.author | Okrasa, Karolina |
dc.date.accessioned | 2024-01-25T00:40:55Z |
dc.date.available | 2024-01-25T00:40:55Z |
dc.date.issued | 2020 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1137/1.9781611975994.97 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/107163 |
dc.identifier.weblink | https://epubs.siam.org/doi/pdf/10.1137/1.9781611975994.97 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 1578-1590 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | fine-grained complexity |
dc.subject.en | graph homomorphism |
dc.subject.pl | drobnoziarnista złożoność |
dc.subject.pl | homomorfizm grafów |
dc.title | Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs |
dc.type | JournalArticle |
dspace.entity.type | Publication |