Artykuł w czasopiśmie
Brak miniatury
Licencja
Uhlenbeck’s Decomposition in Sobolev and Morrey–Sobolev Spaces
cris.lastimport.scopus | 2024-02-12T19:50:27Z |
dc.abstract.en | We present a self-contained proof of Rivière’s theorem on the existence of Uhlenbeck’s decomposition for Ω∈Lp(Bn,so(m)⊗Λ1Rn) for p∈(1,n), with Sobolev type estimates in the case p∈[n/2,n) and Morrey–Sobolev type estimates in the case p∈(1,n/2). We also prove an analogous theorem in the case when Ω∈Lp(Bn,TCO+(m)⊗Λ1Rn), which corresponds to Uhlenbeck’s decomposition with conformal gauge group. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Zatorska-Goldstein, Anna |
dc.contributor.author | Goldstein, Paweł |
dc.date.accessioned | 2024-01-26T11:17:52Z |
dc.date.available | 2024-01-26T11:17:52Z |
dc.date.copyright | 2018-05-03 |
dc.date.issued | 2018 |
dc.description.accesstime | AT_PUBLICATION |
dc.description.finance | Nie dotyczy |
dc.description.number | 2 |
dc.description.version | FINAL_PUBLISHED |
dc.description.volume | 73 |
dc.identifier.doi | 10.1007/S00025-018-0830-9 |
dc.identifier.issn | 1422-6383 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/124067 |
dc.identifier.weblink | https://link.springer.com/content/pdf/10.1007/s00025-018-0830-9.pdf |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Results in Mathematics |
dc.relation.pages | 71:1-71:31 |
dc.rights | CC-BY |
dc.sciencecloud | nosend |
dc.title | Uhlenbeck’s Decomposition in Sobolev and Morrey–Sobolev Spaces |
dc.type | JournalArticle |
dspace.entity.type | Publication |