Artykuł w czasopiśmie
Brak miniatury
Licencja
Geometric ergodicity of Rao and Teh's algorithm for Markov jump processes and CTBNs
cris.lastimport.scopus | 2024-02-12T19:51:01Z |
dc.abstract.en | Rao and Teh (2012, 2013) introduced an efficient MCMC algorithm for sampling from the posterior distribution of a hidden Markov jump process. The algorithm is based on the idea of sampling virtual jumps. In the present paper we show that the Markov chain generated by Rao and Teh’s algorithm is geometrically ergodic. To this end we establish a geometric drift condition towards a small set. A similar result is also proved for a special version of the algorithm, used for probabilistic inference in Continuous Time Bayesian Networks. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Miasojedow, Błażej |
dc.contributor.author | Niemiro, Wojciech |
dc.date.accessioned | 2024-01-25T02:06:00Z |
dc.date.available | 2024-01-25T02:06:00Z |
dc.date.issued | 2017 |
dc.description.finance | Nie dotyczy |
dc.description.number | 2 |
dc.description.volume | 11 |
dc.identifier.doi | 10.1214/17-EJS1348 |
dc.identifier.issn | 1935-7524 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/107878 |
dc.identifier.weblink | http://dx.doi.org/10.1214/17-EJS1348 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Electronic Journal of Statistics |
dc.relation.pages | 4629-4648 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Continuous time Markov processes |
dc.subject.en | MCMC |
dc.subject.en | hidden Markov models |
dc.subject.en | posterior sampling |
dc.subject.en | geometric ergodicity |
dc.subject.en | drift condition |
dc.subject.en | small set |
dc.subject.en | continuous time Bayesian network |
dc.title | Geometric ergodicity of Rao and Teh's algorithm for Markov jump processes and CTBNs |
dc.type | JournalArticle |
dspace.entity.type | Publication |