Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

An introduction to completely exceptional 2nd order scalar PDEs

Uproszczony widok
dc.abstract.enIn his 1954 paper about the initial value problem for 2D hyperbolic nonlinear PDEs, P. Lax declared that he had “a strong reason to believe” that there must exist a well-defined class of “not genuinely nonlinear” nonlinear PDEs. In 1978 G. Boillat coined the term “completely exceptional” to denote it. In the case of second order (nonlinear) PDEs, he also proved that this class reduces to the class of Monge–Ampère equations. We review here, against a unified geometric background, the notion of complete exceptionality, the definition of a Monge–Ampère equation, and the interesting link between them.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorMoreno, Giovanni
dc.date.accessioned2024-01-24T16:43:09Z
dc.date.available2024-01-24T16:43:09Z
dc.date.issued2017
dc.description.financeNie dotyczy
dc.identifier.doi10.4064/BC113-0-15
dc.identifier.issn0137-6934
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/100926
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofBANACH CENTER PUBLICATIONS
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enNonlinear PDEs exterior differential systems contact geometry Lagrangian Grassmannians characteristics of PDEs initial value problem exceptional PDEs.
dc.titleAn introduction to completely exceptional 2nd order scalar PDEs
dc.typeJournalArticle
dspace.entity.typePublication