Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

RainBench: Towards Global Precipitation Forecasting from Satellite Imagery

Uproszczony widok
dc.abstract.enExtreme precipitation events, such as violent rainfall and hail storms, routinely ravage economies and livelihoods around the developing world. Climate change further aggravates this issue. Data-driven deep learning approaches could widen the access to accurate multi-day forecasts, to mitigate against such events. However, there is currently no benchmark dataset dedicated to the study of global precipitation forecasts. In this paper, we introduce \textbf{RainBench}, a new multi-modal benchmark dataset for data-driven precipitation forecasting. It includes simulated satellite data, a selection of relevant meteorological data from the ERA5 reanalysis product, and IMERG precipitation data. We also release \textbf{PyRain}, a library to process large precipitation datasets efficiently. We present an extensive analysis of our novel dataset and establish baseline results for two benchmark medium-range precipitation forecasting tasks. Finally, we discuss existing data-driven weather forecasting methodologies and suggest future research avenues.
dc.affiliationUniwersytet Warszawski
dc.conference.countryKanada
dc.conference.datefinish2021-02-09
dc.conference.datestart2021-02-02
dc.conference.placeVancouver
dc.conference.seriesNational Conference of the American Association for Artificial Intelligence
dc.conference.seriesNational Conference of the American Association for Artificial Intelligence
dc.conference.seriesshortcutAAAI
dc.conference.shortcutAAAI 2021
dc.conference.weblinkhttps://aaai.org/Conferences/AAAI-21/
dc.contributor.authorWitt, Christian Schroeder de
dc.contributor.authorTong, Catherine
dc.contributor.authorBiliński, Piotr
dc.contributor.authorKalaitzis, Freddie
dc.contributor.authorWatson-Parris, Duncan
dc.contributor.authorZantedeschi, Valentina
dc.contributor.authorChantry, Matthew
dc.contributor.authorMartini, Daniele De
dc.date.accessioned2024-01-25T18:46:02Z
dc.date.available2024-01-25T18:46:02Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/117823
dc.identifier.weblinkhttps://ojs.aaai.org/index.php/AAAI/article/view/17749
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages1-11
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleRainBench: Towards Global Precipitation Forecasting from Satellite Imagery
dc.typeJournalArticle
dspace.entity.typePublication