Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Concise tensors of minimal border rank

cris.lastimport.scopus2024-02-12T19:55:12Z
dc.abstract.enWe determine defining equations for the set of concise tensors of minimal border rank in Cm ⊗Cm ⊗Cm when m = 5 and the set of concise minimal border rank 1∗-generic tensors when m = 5, 6. We solve the classical problem in algebraic complexity theory of classifying minimal border rank tensors in the special case m = 5. Our proofs utilize two recent developments: the 111-equations defined by Buczy´nska–Buczy´nski and results of Jelisiejew–Šivic on the variety of commuting matrices. We introduce a new algebraic invariant of a concise tensor, its 111-algebra, and exploit it to give a strengthening of Friedland’s normal form for 1-degenerate tensors satisfying Strassen’s equations. We use the 111-algebra to characterize wild minimal border rank tensors and classify them in C5⊗C5⊗C5 .
dc.affiliationUniwersytet Warszawski
dc.contributor.authorPal, Arpan
dc.contributor.authorLandsberg, J. M.
dc.contributor.authorJelisiejew, Joachim
dc.date.accessioned2024-01-24T20:05:49Z
dc.date.available2024-01-24T20:05:49Z
dc.date.issued2023
dc.description.financePublikacja bezkosztowa
dc.identifier.doi10.1007/S00208-023-02569-Y
dc.identifier.issn0025-5831
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/103505
dc.identifier.weblinkhttps://link.springer.com/content/pdf/10.1007/s00208-023-02569-y.pdf
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofMathematische Annalen
dc.relation.pages1-45
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleConcise tensors of minimal border rank
dc.typeJournalArticle
dspace.entity.typePublication