Artykuł w czasopiśmie
Brak miniatury
Licencja

CC-BYCC-BY - Uznanie autorstwa
 

On Geometric Set Cover for Orthants

dc.abstract.enWe study SET COVER for orthants: Given a set of points in a d-dimensional Euclidean space and a set of orthants of the form (-infty,p_1] x ... x (-infty,p_d], select a minimum number of orthants so that every point is contained in at least one selected orthant. This problem draws its motivation from applications in multi-objective optimization problems. While for d=2 the problem can be solved in polynomial time, for d>2 no algorithm is known that avoids the enumeration of all size-k subsets of the input to test whether there is a set cover of size k. Our contribution is a precise understanding of the complexity of this problem in any dimension d >= 3, when k is considered a parameter: - For d=3, we give an algorithm with runtime n^O(sqrt{k}), thus avoiding exhaustive enumeration. - For d=3, we prove a tight lower bound of n^Omega(sqrt{k}) (assuming ETH). - For d >=slant 4, we prove a tight lower bound of n^Omega(k) (assuming ETH). Here n is the size of the set of points plus the size of the set of orthants. The first statement comes as a corollary of a more general result: an algorithm for SET COVER for half-spaces in dimension 3. In particular, we show that given a set of points U in R^3, a set of half-spaces D in R^3, and an integer k, one can decide whether U can be covered by the union of at most k half-spaces from D in time |D|^O(sqrt{k})* |U|^O(1). We also study approximation for SET COVER for orthants. While in dimension 3 a PTAS can be inferred from existing results, we show that in dimension 4 and larger, there is no 1.05-approximation algorithm with runtime f(k)* n^o(k) for any computable f, where k is the optimum.
dc.affiliationUniwersytet Warszawski
dc.conference.countryNiemcy
dc.conference.datefinish2019-09-13
dc.conference.datestart2019-09-09
dc.conference.placeMonachium
dc.conference.seriesEuropean Symposium on Algorithms
dc.conference.seriesEuropean Symposium on Algorithms
dc.conference.seriesshortcutESA
dc.conference.shortcutESA 2019
dc.conference.weblinkhttp://esa-symposium.org/
dc.contributor.authorPilipczuk, Marcin
dc.contributor.authorKisfaludi-Bak, Sándor
dc.contributor.authorBringmann, Karl
dc.contributor.authorLeeuwen, Erik Jan van
dc.date.accessioned2024-01-25T15:45:11Z
dc.date.available2024-01-25T15:45:11Z
dc.date.copyright2019-09-06
dc.date.issued2019
dc.description.accesstimeAT_PUBLICATION
dc.description.financeNie dotyczy
dc.description.versionFINAL_PUBLISHED
dc.identifier.doi10.4230/LIPICS.ESA.2019.26
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/114698
dc.identifier.weblinkhttps://drops.dagstuhl.de/opus/volltexte/2019/11147/
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages26:1--26:18
dc.rightsCC-BY
dc.sciencecloudnosend
dc.subject.enSet Cover
dc.subject.enparameterized complexity
dc.subject.enalgorithms
dc.subject.enExponential Time Hypothesis
dc.titleOn Geometric Set Cover for Orthants
dc.typeJournalArticle
dspace.entity.typePublication