Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Non-asymptotic Analysis of Biased Stochastic Approximation Scheme

Uproszczony widok
dc.abstract.enStochastic approximation (SA) is a key method used in statistical learning. Recently, its non-asymptotic convergence analysis has been considered in many papers. However, most of the prioranalyses are made under restrictive assumptions such as unbiased gradient estimates and convexobjective function, which significantly limit their applications to sophisticated tasks such as onlineand reinforcement learning. These restrictions are all essentially relaxed in this work. In particular,we analyze a general SA scheme to minimize a non-convex, smooth objective function. We con-sider update procedure whose drift term depends on a state-dependent Markov chain and the meanfield is not necessarily of gradient type, covering approximate second-order method and allowingasymptotic bias for the one-step updates. We illustrate these settings with the online EM algorithmand the policy-gradient method for average reward maximization in reinforcement learning.Keywords:biased stochastic approximation, state-dependent Markov chain, non-convex optimiza-tion, policy gradient, online expectation-maximization.
dc.affiliationUniwersytet Warszawski
dc.conference.countryStany Zjednoczone
dc.conference.datefinish2019-06-28
dc.conference.datestart2019-06-25
dc.conference.placePhoenix
dc.conference.seriesConference on Learning Theory
dc.conference.seriesConference on Learning Theory
dc.conference.seriesshortcutCOLT
dc.contributor.authorMiasojedow, Błażej
dc.contributor.authorWai, Hoi-To
dc.contributor.authorMoulines, Eric
dc.contributor.authorKarimi, Belhal
dc.date.accessioned2024-01-25T13:50:40Z
dc.date.available2024-01-25T13:50:40Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.description.volume99
dc.identifier.issn2640-3498
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/113824
dc.identifier.weblinkhttp://proceedings.mlr.press/v99/karimi19a.html
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofProceedings of Machine Learning Research
dc.relation.pages1944-1974
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enbiased stochastic approximation
dc.subject.enstate-dependent Markov chain
dc.subject.ennon-convex optimiza- tion
dc.subject.enreinforcement learning
dc.subject.enonline expectation-maximization
dc.titleNon-asymptotic Analysis of Biased Stochastic Approximation Scheme
dc.typeJournalArticle
dspace.entity.typePublication