Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Particle MCMC With Poisson Resampling: Parallelization and Continuous Time Models

cris.lastimport.scopus2024-02-12T19:46:19Z
dc.abstract.enWe introduce a new version of particle filter in which the number of “children” of a particle at a given time has a Poisson distribution. As a result, the number of particles is random and varies with time. An advantage of this scheme is that descendants of different particles can evolve independently. It makes easy to parallelize computations. Moreover, particle filter with Poisson resampling is readily adapted to the case when a hidden process is a continuous time, piecewise deterministic semi-Markov process. We show that the basic techniques of particle MCMC, namely particle independent Metropolis-Hastings, particle Gibbs sampler and its version with ancestor sampling, work under our Poisson resampling scheme. Our version of particle Gibbs sampler is uniformly ergodic under the same assumptions as its standard counterpart. We present simulation results which indicate that our algorithms can compete with the existing methods. Supplemental materials for this article are available online.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorMiasojedow, Błażej
dc.contributor.authorCąkała, Tomasz
dc.contributor.authorNiemiro, Wojciech
dc.date.accessioned2024-01-25T16:21:17Z
dc.date.available2024-01-25T16:21:17Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.description.number3
dc.description.volume30
dc.identifier.doi10.1080/10618600.2020.1840998
dc.identifier.issn1061-8600
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/115545
dc.identifier.weblinkhttps://doi.org/10.1080/10618600.2020.1840998
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofJournal of Computational and Graphical Statistics
dc.relation.pages671-684
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enAncestor sampling
dc.subject.enGibbs sampler
dc.subject.enHidden Markov model
dc.subject.enIndependent Metropolis–Hastings algorithm
dc.subject.enPiecewise deterministic semi-Markov process
dc.subject.enPseudo-marginal
dc.subject.enSequential Monte Carlo
dc.titleParticle MCMC With Poisson Resampling: Parallelization and Continuous Time Models
dc.typeJournalArticle
dspace.entity.typePublication