Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

From Heun Class Equations to Painlevé Equations

cris.lastimport.scopus2024-02-12T19:47:40Z
dc.abstract.enIn this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k-symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds. This formalism describes the dynamical properties of physical systems that locally behave like multi-Hamiltonian systems. Here, we describe the local Hamiltonian properties of such systems, but we also provide a global outlook by introducing the global Lee one-form approach. In particular, the dynamics will be depicted with the aid of the Hamilton–Jacobi equation, which is specifically proposed in a l.c.k-s manifold.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorDereziński, Jan
dc.contributor.authorLatosiński, Adam
dc.contributor.authorIshkhanyan, Artur
dc.date.accessioned2024-01-25T01:37:13Z
dc.date.available2024-01-25T01:37:13Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.description.number1
dc.description.volume18
dc.identifier.doi10.3842/SIGMA.2021.056
dc.identifier.issn1815-0659
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/107532
dc.identifier.weblinkhttp://dx.doi.org/10.3842/sigma.2021.056
dc.languageeng
dc.pbn.affiliationphysical sciences
dc.relation.ispartofSymmetry, Integrability and Geometry - Methods and Applications
dc.relation.pages26
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleFrom Heun Class Equations to Painlevé Equations
dc.typeJournalArticle
dspace.entity.typePublication