Artykuł w czasopiśmie
Brak miniatury
Licencja
From Heun Class Equations to Painlevé Equations
cris.lastimport.scopus | 2024-02-12T19:47:40Z |
dc.abstract.en | In this paper, we aim at addressing the globalization problem of Hamilton–DeDonder–Weyl equations on a local k-symplectic framework and we introduce the notion of locally conformal k-symplectic (l.c.k-s.) manifolds. This formalism describes the dynamical properties of physical systems that locally behave like multi-Hamiltonian systems. Here, we describe the local Hamiltonian properties of such systems, but we also provide a global outlook by introducing the global Lee one-form approach. In particular, the dynamics will be depicted with the aid of the Hamilton–Jacobi equation, which is specifically proposed in a l.c.k-s manifold. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Dereziński, Jan |
dc.contributor.author | Latosiński, Adam |
dc.contributor.author | Ishkhanyan, Artur |
dc.date.accessioned | 2024-01-25T01:37:13Z |
dc.date.available | 2024-01-25T01:37:13Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 1 |
dc.description.volume | 18 |
dc.identifier.doi | 10.3842/SIGMA.2021.056 |
dc.identifier.issn | 1815-0659 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/107532 |
dc.identifier.weblink | http://dx.doi.org/10.3842/sigma.2021.056 |
dc.language | eng |
dc.pbn.affiliation | physical sciences |
dc.relation.ispartof | Symmetry, Integrability and Geometry - Methods and Applications |
dc.relation.pages | 26 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | From Heun Class Equations to Painlevé Equations |
dc.type | JournalArticle |
dspace.entity.type | Publication |