Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Compressible Navier‐Stokes equations with ripped density

Uproszczony widok
cris.lastimport.scopus2024-02-12T19:57:31Z
dc.abstract.enWe are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations supplemented with general H1 initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g. P = ργ with γ > 1 ), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorMucha, Piotr
dc.contributor.authorDanchin, Raphaël
dc.date.accessioned2024-01-24T19:52:29Z
dc.date.available2024-01-24T19:52:29Z
dc.date.issued2023
dc.description.financePublikacja bezkosztowa
dc.description.number11
dc.description.volume76
dc.identifier.doi10.1002/CPA.22116
dc.identifier.issn0010-3640
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/103464
dc.identifier.weblinkhttps://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.22116
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofCommunications on Pure and Applied Mathematics
dc.relation.pages3437-3492
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleCompressible Navier‐Stokes equations with ripped density
dc.typeJournalArticle
dspace.entity.typePublication