Artykuł w czasopiśmie
Brak miniatury
Licencja
Compressible Navier‐Stokes equations with ripped density
cris.lastimport.scopus | 2024-02-12T19:57:31Z |
dc.abstract.en | We are concerned with the Cauchy problem for the two-dimensional compressible Navier-Stokes equations supplemented with general H1 initial velocity and bounded initial density not necessarily strictly positive: it may be the characteristic function of any set, for instance. In the perfect gas case, we establish global-in-time existence and uniqueness, provided the volume (bulk) viscosity coefficient is large enough. For more general pressure laws (like e.g. P = ργ with γ > 1 ), we still get global existence, but uniqueness remains an open question. As a by-product of our results, we give a rigorous justification of the convergence to the inhomogeneous incompressible Navier-Stokes equations when the bulk viscosity tends to infinity. In the three-dimensional case, similar results are proved for short time without restriction on the viscosity, and for large time if the initial velocity field is small enough. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Mucha, Piotr |
dc.contributor.author | Danchin, Raphaël |
dc.date.accessioned | 2024-01-24T19:52:29Z |
dc.date.available | 2024-01-24T19:52:29Z |
dc.date.issued | 2023 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 11 |
dc.description.volume | 76 |
dc.identifier.doi | 10.1002/CPA.22116 |
dc.identifier.issn | 0010-3640 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/103464 |
dc.identifier.weblink | https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.22116 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Communications on Pure and Applied Mathematics |
dc.relation.pages | 3437-3492 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | Compressible Navier‐Stokes equations with ripped density |
dc.type | JournalArticle |
dspace.entity.type | Publication |