Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Truncated Robust Principal Component Analysis and Noise Reduction for Single Cell RNA Sequencing Data

dc.abstract.enThe development of single cell RNA sequencing (scRNA-seq) has enabled innovative approaches to investigating mRNA abundances. In our study, we are interested in extracting the systematic patterns of scRNA-seq data in an unsupervised manner; thus, we have developed two extensions of robust principal component analysis (RPCA). First, we present a truncated version of RPCA (tRPCA), which is much faster and memory efficient. Second, we introduce a noise reduction in tRPCA with L2 regularization. Unlike RPCA that only considers a low-rank L and sparse S matrices, the proposed method can also extract a noise E matrix inherent in modern genomic data. We demonstrate its usefulness by applying our methods on the peripheral blood mononuclear cell scRNA-seq data. Particularly, the clustering of a low-rank L matrix showcases better classification of unlabeled single cells. Overall, the proposed variants are well suited for high-dimensional and noisy data that are routinely generated in genomics.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorGogolewski, Krzysztof
dc.contributor.authorGambin, Anna
dc.contributor.authorSykulski, Maciej
dc.contributor.authorChung, Neo Christopher
dc.date.accessioned2024-01-26T11:07:06Z
dc.date.available2024-01-26T11:07:06Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.description.number8
dc.description.volume26
dc.identifier.doi10.1089/CMB.2018.0255
dc.identifier.issn1066-5277
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/123838
dc.identifier.weblinkhttps://www.liebertpub.com/doi/full-xml/10.1089/cmb.2018.0255
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.ispartofJournal of Computational Biology
dc.relation.pages782-793
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enmatrix decomposition
dc.subject.enprincipal component analysis
dc.subject.enrobust PCA
dc.subject.ensingle cell RNA-seq
dc.subject.enunsupervised learning
dc.titleTruncated Robust Principal Component Analysis and Noise Reduction for Single Cell RNA Sequencing Data
dc.typeJournalArticle
dspace.entity.typePublication