Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Integral points on circles

cris.lastimport.scopus2024-02-12T19:39:47Z
dc.abstract.enSixty years ago the first named author gave an example [Sch58] of a circle passing through an arbitrary number of integral points. Now we shall prove: The number N of integral points on the circle (x − a) 2 + (y − b) 2 = r 2 with radius r = 1 n √ m, where m, n ∈ Z, m, n > 0, gcd(m, n2 ) squarefree and a, b ∈ Q does not exceed r(m)/4, where r(m) is the number of representations of m as the sum of two squares, unless n|2 and n · (a, b) ∈ Z 2 ; then N ≤ r(m).
dc.affiliationUniwersytet Warszawski
dc.contributor.authorSchinzel, Andrzej
dc.contributor.authorSkałba, Mariusz
dc.date.accessioned2024-01-25T04:20:15Z
dc.date.available2024-01-25T04:20:15Z
dc.date.issued2018
dc.description.financeNie dotyczy
dc.description.volume41
dc.identifier.doi10.46298/HRJ.2019.5116
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/109413
dc.identifier.weblinkhttps://hrj.episciences.org/5116
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofHardy-Ramanujan Journal
dc.relation.pages140 - 142
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.ensums of two squares
dc.subject.enGaussian integers
dc.titleIntegral points on circles
dc.typeJournalArticle
dspace.entity.typePublication