Artykuł w czasopiśmie
Brak miniatury
Licencja
Integral points on circles
cris.lastimport.scopus | 2024-02-12T19:39:47Z |
dc.abstract.en | Sixty years ago the first named author gave an example [Sch58] of a circle passing through an arbitrary number of integral points. Now we shall prove: The number N of integral points on the circle (x − a) 2 + (y − b) 2 = r 2 with radius r = 1 n √ m, where m, n ∈ Z, m, n > 0, gcd(m, n2 ) squarefree and a, b ∈ Q does not exceed r(m)/4, where r(m) is the number of representations of m as the sum of two squares, unless n|2 and n · (a, b) ∈ Z 2 ; then N ≤ r(m). |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Schinzel, Andrzej |
dc.contributor.author | Skałba, Mariusz |
dc.date.accessioned | 2024-01-25T04:20:15Z |
dc.date.available | 2024-01-25T04:20:15Z |
dc.date.issued | 2018 |
dc.description.finance | Nie dotyczy |
dc.description.volume | 41 |
dc.identifier.doi | 10.46298/HRJ.2019.5116 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/109413 |
dc.identifier.weblink | https://hrj.episciences.org/5116 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Hardy-Ramanujan Journal |
dc.relation.pages | 140 - 142 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | sums of two squares |
dc.subject.en | Gaussian integers |
dc.title | Integral points on circles |
dc.type | JournalArticle |
dspace.entity.type | Publication |