Artykuł w czasopiśmie
Brak miniatury
Licencja
Tuza's conjecture for threshold graphs
cris.lastimport.scopus | 2024-02-12T20:50:43Z |
dc.abstract.en | Tuza famously conjectured in 1981 that in a graph without k+1 edge-disjoint triangles, it suffices to delete at most 2k edges to obtain a triangle-free graph. The conjecture holds for graphs with small treewidth or small maximum average degree, including planar graphs. However, for dense graphs that are neither cliques nor 4-colorable, only asymptotic results are known. Here, we confirm the conjecture for threshold graphs, i.e. graphs that are both split graphs and cographs, and for co-chain graphs with both sides of the same size divisible by 4. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Okrasa, Karolina |
dc.contributor.author | Bożyk, Łukasz |
dc.contributor.author | Masařík, Tomáš |
dc.contributor.author | Bonamy, Marthe |
dc.contributor.author | Hatzel, Meike |
dc.contributor.author | Novotná, Jana |
dc.contributor.author | Grzesik, Andrzej |
dc.date.accessioned | 2024-01-26T11:08:02Z |
dc.date.available | 2024-01-26T11:08:02Z |
dc.date.copyright | 2022-09-28 |
dc.date.issued | 2022 |
dc.description.accesstime | AT_PUBLICATION |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 1 |
dc.description.version | FINAL_PUBLISHED |
dc.description.volume | 24 |
dc.identifier.doi | 10.46298/DMTCS.7660 |
dc.identifier.issn | 1365-8050 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/123915 |
dc.identifier.weblink | https://ruj.uj.edu.pl/xmlui/handle/item/300350 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.ispartof | Discrete Mathematics and Theoretical Computer Science |
dc.relation.pages | 1-14 |
dc.rights | CC-BY |
dc.sciencecloud | nosend |
dc.title | Tuza's conjecture for threshold graphs |
dc.type | JournalArticle |
dspace.entity.type | Publication |