Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning

dc.abstract.enPredicting the compressive strength of cement-stabilized rammed earth (CSRE) using current testing machines is time-consuming and costly and may harm the environment due to the samples’ waste. This paper presents an automatic method using computer vision and deep learning to solve the problem. For this purpose, a deep convolutional neural network (DCNN) model is proposed, which was evaluated on a new in-house scanning electron microscope (SEM) image database containing 4284 images of materials with different compressive strengths. The experimental results show reasonable prediction results compared to other traditional methods, achieving 84% prediction accuracy and a small (1.5) oot Mean Square Error (RMSE). This indicates that the proposed method (with some enhancements) can be used in practice for predicting the compressive strength of CSRE samples.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorNarloch, Piotr
dc.contributor.authorTarawneh, Ahmad S.
dc.contributor.authorAlmohammadi, Khalid
dc.contributor.authorHassanat, Ahmad
dc.contributor.authorAnysz, Hubert
dc.contributor.authorKotowski, Jakub
dc.date.accessioned2024-01-25T17:32:24Z
dc.date.available2024-01-25T17:32:24Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.description.number23
dc.description.volume9
dc.identifier.doi10.3390/APP9235131
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/116895
dc.identifier.weblinkhttps://www.mdpi.com/2076-3417/9/23/5131
dc.languageeng
dc.pbn.affiliationearth and related environmental sciences
dc.relation.ispartofApplied Sciences (Switzerland)
dc.relation.pages1-14
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.endeep learning
dc.subject.enconvolutional neural network
dc.subject.enSEM images
dc.subject.enrammed earth
dc.subject.encement-stabilized rammed earth
dc.subject.encement stabilization
dc.titlePredicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
dc.typeJournalArticle
dspace.entity.typePublication