Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Lp regularity of least gradient functions

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:42:47Z
dc.abstract.enIt is shown that in the anisotropic least gradient problem on an open bounded set $\Omega \subset \mathbb{R}^N$ with Lipschitz boundary, given boundary data $f \in L^p(\partial\Omega)$ the solutions lie in $L^{\frac{Np}{N-1}}(\Omega)$; the exponent is shown to be optimal. Moreover, the solutions are shown to be locally bounded with explicit bounds on the rate of blow-up of the solution near the boundary in two settings: in the anisotropic case on the plane and in the isotropic case in any dimension.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorGórny, Wojciech
dc.date.accessioned2024-01-25T05:29:41Z
dc.date.available2024-01-25T05:29:41Z
dc.date.issued2020
dc.description.financePublikacja bezkosztowa
dc.description.number7
dc.description.volume148
dc.identifier.doi10.1090/PROC/15031
dc.identifier.issn0002-9939
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/111579
dc.identifier.weblinkhttps://www.ams.org/proc/2020-148-07/S0002-9939-2020-15031-9/proc15031_AM.pdf
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofProceedings of the American Mathematical Society
dc.relation.pages3009-3019
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleLp regularity of least gradient functions
dc.typeJournalArticle
dspace.entity.typePublication