Artykuł w czasopiśmie
Brak miniatury
Licencja
Fractional differentiability for solutions of the inhomogeneous p-Laplace system
cris.lastimport.scopus | 2024-02-12T20:44:55Z |
dc.abstract.en | It is shown that if $p \ge 3$ and $u \in W^{1,p}(\Omega,\mathbb{R}^N)$ solves the inhomogenous $p$-Laplace system \[ \operatorname{div} (|\nabla u|^{p-2} \nabla u) = f, \qquad f \in W^{1,p'}(\Omega,\mathbb{R}^N), \] then locally the gradient $\nabla u$ lies in the fractional Nikol'ski{\u\i} space $\mathcal{N}^{\theta,2/\theta}$ with any $\theta \in [ \tfrac{2}{p}, \tfrac{2}{p-1} )$. To the author's knowledge, this result is new even in the case of $p$-harmonic functions, slightly improving known $\mathcal{N}^{2/p,p}$ estimates. The method used here is an extension of the one used by A. Cellina in the case $2 \le p < 3$ to show $W^{1,2}$ regularity. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Miśkiewicz, Michał |
dc.date.accessioned | 2024-01-25T01:15:35Z |
dc.date.available | 2024-01-25T01:15:35Z |
dc.date.issued | 2018 |
dc.description.finance | Nie dotyczy |
dc.description.volume | 146 |
dc.identifier.doi | 10.1090/PROC/13993 |
dc.identifier.issn | 0002-9939 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/107446 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Proceedings of the American Mathematical Society |
dc.relation.pages | 3009-3017 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | p-Laplacian degenerate elliptic systems fractional order Nikol’ski spaces |
dc.title | Fractional differentiability for solutions of the inhomogeneous p-Laplace system |
dc.type | JournalArticle |
dspace.entity.type | Publication |