Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Take it to the limit: peak prediction-driven resource overcommitment in datacenters

dc.abstract.enTo increase utilization, datacenter schedulers often overcommit resources where the sum of resources allocated to the tasks on a machine exceeds its physical capacity. Setting the right level of overcommitment is a challenging problem: low overcommitment leads to wasted resources, while high overcommitment leads to task performance degradation. In this paper, we take a first principles approach to designing and evaluating overcommit policies by asking a basic question: assuming complete knowledge of each task's future resource usage, what is the safest overcommit policy that yields the highest utilization? We call this policy the peak oracle. We then devise practical overcommit policies that mimic this peak oracle by predicting future machine resource usage. We simulate our overcommit policies using the recently-released Google cluster trace, and show that they result in higher utilization and less overcommit errors than policies based on per-task allocations. We also deploy these policies to machines inside Google's datacenters serving its internal production workload. We show that our overcommit policies increase these machines' usable CPU capacity by 10-16% compared to no overcommitment.
dc.affiliationUniwersytet Warszawski
dc.conference.countryWielka Brytania
dc.conference.datefinish2021-04-28
dc.conference.datestart2021-04-26
dc.conference.placeWirtualna
dc.conference.seriesEurosys Conference
dc.conference.seriesEurosys Conference
dc.conference.seriesshortcutEuroSys
dc.conference.shortcutEuroSys'16
dc.conference.weblinkhttps://2021.eurosys.org/
dc.contributor.authorJnagal, Rohit
dc.contributor.authorKodak, Sree
dc.contributor.authorIrwin, David
dc.contributor.authorRządca, Krzysztof
dc.contributor.authorDeng, Nan
dc.contributor.authorBashir, Noman
dc.date.accessioned2024-01-26T09:41:04Z
dc.date.available2024-01-26T09:41:04Z
dc.date.issued2021
dc.description.financePublikacja bezkosztowa
dc.identifier.doi10.1145/3447786.3456259
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/121515
dc.identifier.weblinkhttps://dl.acm.org/doi/pdf/10.1145/3447786.3456259
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.pages556–573
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleTake it to the limit: peak prediction-driven resource overcommitment in datacenters
dc.typeJournalArticle
dspace.entity.typePublication