Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Below All Subsets for Minimal Connected Dominating Set

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:49:05Z
dc.abstract.enA vertex subset S in a graph G is a dominating set if every vertex not contained in S has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced by S is connected. A connected dominating set S is a minimal connected dominating set if no proper subset of S is also a connected dominating set. We prove that there exists a constant \epsilon > 10 - 50 such that every graph G on n vertices has at most \scrO (2(1 - \epsilon )n) minimal connected dominating sets. For the same \epsilon we also give an algorithm with running time 2(1 - \epsilon )n \cdot n\scrO (1) to enumerate all minimal connected dominating sets in an input graph G.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorPilipczuk, Michał
dc.contributor.authorSaurabh, Saket
dc.contributor.authorLokshtanov, Daniel
dc.date.accessioned2024-01-24T18:33:52Z
dc.date.available2024-01-24T18:33:52Z
dc.date.issued2018
dc.description.financeNie dotyczy
dc.description.number3
dc.description.volume32
dc.identifier.doi10.1137/17M1138753
dc.identifier.issn0895-4801
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/102104
dc.languageeng
dc.pbn.affiliationcomputer and information sciences
dc.relation.ispartofSIAM Journal on Discrete Mathematics
dc.relation.pages332--2345
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleBelow All Subsets for Minimal Connected Dominating Set
dc.typeJournalArticle
dspace.entity.typePublication