Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Perturbations of the Hess-Appelrot and Lagrange cases in the rigid body dynamics

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:47:37Z
dc.abstract.enThe Lagrange case in the rigid body dynamics is completely integrable, with a family of invariant tori supporting periodic or quasi-periodic motion. We study perturbations of this case. In the non-periodic case the KAM theory predicts no changes in the evolution. In the periodic cases one expects existence of isolated limit cycles, which can be studied using Melnikov functions. We find these cycles in the case when the invariant torus is close to so-called critical circle. The presented approach is analogous to our previous analysis of the Hess–Appelrot case. In particular, we show that the number of created limit cycles in the latter case is uniformly bounded.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorŻołądek, Henryk
dc.date.accessioned2024-01-25T16:35:25Z
dc.date.available2024-01-25T16:35:25Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.description.volume142
dc.identifier.doi10.1016/J.GEOMPHYS.2019.04.001
dc.identifier.issn0393-0440
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/115755
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofJournal of Geometry and Physics
dc.relation.pages121-136
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enEuler-Poisson system Hess-Appelrot case Lagrange case Melnikov integral
dc.titlePerturbations of the Hess-Appelrot and Lagrange cases in the rigid body dynamics
dc.typeJournalArticle
dspace.entity.typePublication