Rozdział w monografii
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Moment Estimation Implied by the Bobkov-Ledoux Inequality

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:47:45Z
dc.abstract.enIn this paper we consider a probability measure on the high dimensional Euclidean space satisfying Bobkov-Ledoux inequality. Bobkov and Ledoux have shown in (Probab Theory Related Fields 107(3):383–400, 1997) that such entropy inequality captures concentration phenomenon of product exponential measure and implies Poincaré inequality. For this reason any measure satisfying one of those inequalities shares the same concentration result as the exponential measure. In this paper using B-L inequality we derive some bounds for exponential Orlicz norms for any locally Lipschitz function. The result is close to the question posted by Adamczak and Wolff in (Probab Theory Related Fields 162:531–586, 2015) regarding moments estimate for locally Lipschitz functions, which is expected to result from B-L inequality.
dc.affiliationUniwersytet Warszawski
dc.contributor.authorGłowienko, Grzegorz
dc.contributor.authorBednorz, Witold
dc.date.accessioned2024-01-29T01:50:23Z
dc.date.available2024-01-29T01:50:23Z
dc.date.issued2019
dc.description.financeNie dotyczy
dc.identifier.doi10.1007/978-3-030-26391-1_2
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/156064
dc.identifier.weblinkhttp://link.springer.com/content/pdf/10.1007/978-3-030-26391-1_2
dc.languageeng
dc.pbn.affiliationmathemathics
dc.publisher.ministerialBirkhäuser, Cham
dc.relation.bookHigh Dimensional Probability VIII: The Oaxaca Volume
dc.relation.pages9-20
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enConcentration of measure
dc.subject.enPoincaré inequality
dc.subject.enSobolev inequality
dc.titleMoment Estimation Implied by the Bobkov-Ledoux Inequality
dc.typeMonographChapter
dspace.entity.typePublication