Artykuł w czasopiśmie
Brak miniatury
Licencja
On the Verification of Neural ODEs with Stochastic Guarantees
cris.lastimport.scopus | 2024-02-12T20:47:53Z |
dc.abstract.en | We show that Neural ODEs, an emerging class of time-continuous neural networks, can be verified by solving a set of global-optimization problems. For this purpose, we introduce Stochastic Lagrangian Reachability (SLR), an abstraction-based technique for constructing a tight Reachtube (an over-approximation of the set of reachable states over a given time-horizon), and provide stochastic guarantees in the form of confidence intervals for the Reachtube bounds. SLR inherently avoids the infamous wrapping effect (accumulation of over-approximation errors) by performing local optimization steps to expand safe regions instead of repeatedly forward-propagating them as is done by deterministic reachability methods. To enable fast local optimizations, we introduce a novel forward-mode adjoint sensitivity method to compute gradients without the need for backpropagation. Finally, we establish asymptotic and non-asymptotic convergence rates for SLR. |
dc.affiliation | Uniwersytet Warszawski |
dc.conference.country | Kanada |
dc.conference.datefinish | 2021-02-09 |
dc.conference.datestart | 2021-02-02 |
dc.conference.place | Vancouver |
dc.conference.series | National Conference of the American Association for Artificial Intelligence |
dc.conference.series | National Conference of the American Association for Artificial Intelligence |
dc.conference.seriesshortcut | AAAI |
dc.conference.shortcut | AAAI 2021 |
dc.conference.weblink | https://aaai.org/Conferences/AAAI-21/ |
dc.contributor.author | Gruenbacher, Sophie |
dc.contributor.author | Hasani, Ramin |
dc.contributor.author | Lechner, Mathias |
dc.contributor.author | Cyranka, Jacek |
dc.contributor.author | Smolka, Scott A. |
dc.contributor.author | Grosu, Radu |
dc.date.accessioned | 2024-01-25T15:49:19Z |
dc.date.available | 2024-01-25T15:49:19Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.identifier.doi | 10.1609/AAAI.V35I13.17372 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/114882 |
dc.identifier.weblink | https://ojs.aaai.org/index.php/AAAI/article/view/17372 |
dc.language | eng |
dc.pbn.affiliation | computer and information sciences |
dc.relation.pages | 11525-11535 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | Safety |
dc.subject.en | Robustness & Trustworthiness |
dc.subject.en | (Deep) Neural Network Learning Theory |
dc.subject.en | Sampling/Simulation-based Search |
dc.title | On the Verification of Neural ODEs with Stochastic Guarantees |
dc.type | JournalArticle |
dspace.entity.type | Publication |