Artykuł w czasopiśmie
Brak miniatury
Licencja
Strong differential subordinates for noncommutative submartingales
cris.lastimport.scopus | 2024-02-12T20:47:56Z |
dc.abstract.en | We introduce a notion of strong differential subordination of noncommutative semimartingales, extending Burkholder’s definition from the classical case. Then we establish the maximal weak-type (1,1) inequality under the additional assumption that the dominating process is a submartingale. The proof rests on a significant extension of the maximal weak-type estimate of Cuculescu and a Gundy-type decomposition of an arbitrary noncommutative submartingale. We also show the corresponding strong-type (p,p) estimate for 1<p<∞ under the assumption that the dominating process is a nonnegative submartingale. This is accomplished by combining several techniques, including interpolation-flavor method, Doob–Meyer decomposition and noncommutative analogue of good-λ inequalities. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Wu, Lian |
dc.contributor.author | Jiao, Yong |
dc.contributor.author | Osękowski, Adam |
dc.date.accessioned | 2024-01-26T08:20:50Z |
dc.date.available | 2024-01-26T08:20:50Z |
dc.date.issued | 2019 |
dc.description.finance | Nie dotyczy |
dc.description.number | 5 |
dc.description.volume | 47 |
dc.identifier.doi | 10.1214/18-AOP1334 |
dc.identifier.issn | 0091-1798 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/120853 |
dc.identifier.weblink | https://projecteuclid.org/download/pdfview_1/euclid.aop/1571731446 |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Annals of Probability |
dc.relation.pages | 3108-3142 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | martingale |
dc.subject.en | noncommutative |
dc.subject.en | von Neumann algebra |
dc.title | Strong differential subordinates for noncommutative submartingales |
dc.type | JournalArticle |
dspace.entity.type | Publication |