Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Lp solutions for a stochastic evolution equation with nonlinear potential

Uproszczony widok
dc.abstract.enThis article deals with the stochastic partial differential equation ⎧⎩⎨ut=12uxx+uγξ,u(0,⋅)=u0, where ξ is a space/time white noise Gaussian random field, γ∈(1,∞) and the initial condition u0 is a non-negative measurable mapping, independent of ξ satisfying u0≥0 and additional conditions given in the article. The space variable is x∈S1=[0,1] with the identification 0=1. The definition of the stochastic term, taken in the sense of Walsh, will be made clear in the article. The result is that there exists a non-negative solution u such that for all α∈[0,1), E[(∫∞0∫S1u(t,x)2γdxdt)α/2]≤K(α)E[(∫S1u0(x)dx)α]<∞. where the finite constant K(α) is derived from the Burkholder–Davis–Gundy inequality constants. The solution is unique among solutions which satisfy this. Solutions are also shown to satisfy E[∫T0(∫S1u(t,x)pdx)α/pdt]<∞ ∀T<∞,0<p<∞,α∈(0,1/2).
dc.affiliationUniwersytet Warszawski
dc.contributor.authorNoble, John
dc.date.accessioned2024-01-25T05:29:42Z
dc.date.available2024-01-25T05:29:42Z
dc.date.issued2022
dc.description.financePublikacja bezkosztowa
dc.description.number2
dc.description.volume264
dc.identifier.doi10.4064/SM210120-2-9
dc.identifier.issn0039-3223
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/111580
dc.identifier.weblinkhttp://dx.doi.org/10.4064/sm210120-2-9
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofStudia Mathematica
dc.relation.pages181-240
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.titleLp solutions for a stochastic evolution equation with nonlinear potential
dc.typeJournalArticle
dspace.entity.typePublication