Artykuł w czasopiśmie
Brak miniatury
Licencja
On birational boundedness of foliated surfaces
dc.abstract.en | In this paper we prove a result on the effective generation of pluri-canonical linear systems on foliated surfaces of general type. Fix a function P:Z≥0→Z , then there exists an integer N>0 such that if (X,F) is a canonical or nef model of a foliation of general type with Hilbert polynomial χ(X,OX(mKF))=P(m) for all m∈Z≥0 , then |mKF| defines a birational map for all m≥N On the way, we also prove a Grauert–Riemenschneider-type vanishing theorem for foliated surfaces with canonical singularities. |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Langer, Adrian |
dc.contributor.author | Hacon, Christopher D. |
dc.date.accessioned | 2024-01-25T15:44:49Z |
dc.date.available | 2024-01-25T15:44:49Z |
dc.date.issued | 2021 |
dc.description.finance | Publikacja bezkosztowa |
dc.description.number | 770 |
dc.description.volume | 2021 |
dc.identifier.doi | 10.1515/CRELLE-2020-0009 |
dc.identifier.issn | 0075-4102 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/114657 |
dc.identifier.weblink | https://www.degruyter.com/view/journals/crll/2021/770/article-p205.xml |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Journal für die Reine und Angewandte Mathematik |
dc.relation.pages | 205-229 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.title | On birational boundedness of foliated surfaces |
dc.type | JournalArticle |
dspace.entity.type | Publication |