Artykuł w czasopiśmie
Brak miniatury
Licencja
Canonical tilting relative generators
cris.lastimport.scopus | 2024-02-12T20:36:51Z |
dc.abstract.en | Given a relatively projective birational morphism f:X \to Y of smooth algebraic spaces with dimension of fibers bounded by 1, we construct tilting relative (over Y) generators T_{X,f} and S_{X,f} in D^b(X). We develop a piece of general theory of strict admissible lattice filtrations in triangulated categories and show that D^b(X) has such a filtration L where the lattice is the set of all birational decompositions f: X\to Z \to Y with smooth Z. The t-structures related to T_{X,f} and S_{X,f} are proved to be glued via filtrations left and right dual to L. We realise all such Z as the fine moduli spaces of simple quotients of O_X in the heart of the t-structure for which S_{X,g} is a relative projective generator over Y. This implements the program of interpreting relevant smooth contractions of X in terms of a suitable system of t-structures on D^b(X). |
dc.affiliation | Uniwersytet Warszawski |
dc.contributor.author | Bondal, Alexey |
dc.contributor.author | Bodzenta-Skibińska, Agnieszka |
dc.date.accessioned | 2024-01-24T19:03:22Z |
dc.date.available | 2024-01-24T19:03:22Z |
dc.date.issued | 2018 |
dc.description.finance | Nie dotyczy |
dc.description.volume | 323 |
dc.identifier.doi | 10.1016/J.AIM.2017.10.016 |
dc.identifier.issn | 0001-8708 |
dc.identifier.uri | https://repozytorium.uw.edu.pl//handle/item/102666 |
dc.identifier.weblink | https://www.sciencedirect.com/science/article/pii/S000187081730292X?via%3Dihub |
dc.language | eng |
dc.pbn.affiliation | mathemathics |
dc.relation.ispartof | Advances in Mathematics |
dc.relation.pages | 226-278 |
dc.rights | ClosedAccess |
dc.sciencecloud | nosend |
dc.subject.en | derived category |
dc.subject.en | birational morphism |
dc.subject.en | t-structure |
dc.subject.en | tilting object |
dc.title | Canonical tilting relative generators |
dc.type | JournalArticle |
dspace.entity.type | Publication |