Artykuł w czasopiśmie
Brak miniatury
Licencja

ClosedAccessDostęp zamknięty
 

Canonical tilting relative generators

Uproszczony widok
cris.lastimport.scopus2024-02-12T20:36:51Z
dc.abstract.enGiven a relatively projective birational morphism f:X \to Y of smooth algebraic spaces with dimension of fibers bounded by 1, we construct tilting relative (over Y) generators T_{X,f} and S_{X,f} in D^b(X). We develop a piece of general theory of strict admissible lattice filtrations in triangulated categories and show that D^b(X) has such a filtration L where the lattice is the set of all birational decompositions f: X\to Z \to Y with smooth Z. The t-structures related to T_{X,f} and S_{X,f} are proved to be glued via filtrations left and right dual to L. We realise all such Z as the fine moduli spaces of simple quotients of O_X in the heart of the t-structure for which S_{X,g} is a relative projective generator over Y. This implements the program of interpreting relevant smooth contractions of X in terms of a suitable system of t-structures on D^b(X).
dc.affiliationUniwersytet Warszawski
dc.contributor.authorBondal, Alexey
dc.contributor.authorBodzenta-Skibińska, Agnieszka
dc.date.accessioned2024-01-24T19:03:22Z
dc.date.available2024-01-24T19:03:22Z
dc.date.issued2018
dc.description.financeNie dotyczy
dc.description.volume323
dc.identifier.doi10.1016/J.AIM.2017.10.016
dc.identifier.issn0001-8708
dc.identifier.urihttps://repozytorium.uw.edu.pl//handle/item/102666
dc.identifier.weblinkhttps://www.sciencedirect.com/science/article/pii/S000187081730292X?via%3Dihub
dc.languageeng
dc.pbn.affiliationmathemathics
dc.relation.ispartofAdvances in Mathematics
dc.relation.pages226-278
dc.rightsClosedAccess
dc.sciencecloudnosend
dc.subject.enderived category
dc.subject.enbirational morphism
dc.subject.ent-structure
dc.subject.entilting object
dc.titleCanonical tilting relative generators
dc.typeJournalArticle
dspace.entity.typePublication